ANALYSIS OF TRUNCATED FACTORIAL EXPERIMENTS

A. K. Mishra \& B. S. Gill
Institute of Agricultural Researh Statistics, New Delhi

(Received in March, 1971)

Introduction

In factorial experiments demand on experimental resources increases with the number of factors due to large number of treatment combinations and the presence of considerable number of non-zero constituents in different treatment combinations. Finney (1945) suggested the concept of fractional replication for factorial experiments for reducing the first of the above two types of demands on resources. We have proposed truncated fractions of the factorial experiments for controlling both these factors. If there are m factors $A_{1}, A_{2}, \ldots, A_{m}$ at two levels each and n factors $B_{1}, B_{2}, \ldots, B n$ at three levels each then

$$
a_{1}{ }^{x_{1}} a_{2}^{x_{2}} \ldots a_{\bar{m}}^{\dot{x_{m}}} b_{b_{1}}^{z_{1}} \cdot b_{2}^{z_{2}} \cdots b_{n}^{z_{n}}
$$

where

$$
x_{i}=0,1 \text { and } z_{j}=0,1,2,
$$

denotes. any treatment combination, then a k-letter truncated factorial experiment ($k-$ L.T.F.E) will have all such treatment combinations for which $\Sigma x_{i}+\Sigma z_{j} \leqslant k$. If all b 's are zeros then it will be k-letter truncated factorial experiment of 2^{m} factorial and on the other hand all a 's are zeros the design will turn out to be a k-letter truncated factorial experiment of 3^{n}.

In the present paper a systematic procedure of obtaining the main effects and other interactions through such truncated experiments has been indicated for two-letter truncated factorial experiments of $2^{m}, 3^{n}$ and $3^{n} \times 2^{m}$ factorial experiments.

[^0]2. Method of Estimation of the Main Effects and Two Factor Interaction Components.
(a) 2^{m} Two-letter truncated design

Let there be m factors $A_{1}, A_{2}, \ldots, A_{m}$ each at two levels.
Let

$$
a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a_{m}{ }^{x_{m}} \text { denote the treatment in which the }
$$ factors

$$
\begin{aligned}
& A_{1}, A_{2}, \ldots \ldots, A_{m} \text { occur at levels } \\
& x_{1}, x_{2}, \ldots, x_{m}\left(x_{i}=0,1\right)
\end{aligned}
$$

when

$$
a_{i}{ }^{0}=1
$$

and

$$
\text { 1. } a_{i}^{x_{i}}=a_{i}^{x_{i}}
$$

In accordance with the standard convention we shall represent a mean response to a treatment by the same symbol of the treatment.

Let any interaction be denoted by $A_{1}{ }^{\lambda_{1}} A_{2}^{\lambda_{2}} \cdots A_{m}{ }^{\lambda_{m}}\left(\lambda_{i}=0,1\right)$ where

$$
A_{i}{ }^{0}=1,1 . A_{i}{ }^{\lambda_{i}}=A_{i}{ }_{i}^{\lambda_{i}}
$$

Taking the usual line as factorial fixed model along with the restrictions on interaction effects we have

$$
\begin{aligned}
& E\left\{\binom{1}{a_{i}} \oplus\binom{1}{a_{2}} \oplus \cdots \oplus\binom{1}{a_{m}}\right\} \\
= & H^{m}\left\{\binom{1}{A_{1}} \oplus\binom{1}{A_{2}} \oplus\binom{1}{A_{n}}\right\}
\end{aligned}
$$

where

$$
\left.H=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{l}
C o \\
C o \\
1
\end{array}\right)_{C 1}^{C 1}\binom{0}{1}\right] \text { say }
$$

we can write any treatment yield

$$
a_{1}{ }^{x_{1}} a_{2}^{x_{2}} \cdots a_{m}^{x_{m}}=\prod_{i=1}^{m}\left\{\operatorname{Co}\left(x_{i}\right)+C_{1}\left(x_{i}\right) A_{i}\right\} \ldots \text { (1) }
$$

Thus the coefficient of any interaction

$$
\begin{aligned}
& A_{1}{ }^{\lambda_{1}} A_{2}{ }^{\lambda_{2}} \ldots A_{m}{ }^{\lambda_{m}} \text { on the right hand side is } \\
& C_{\lambda_{1}}\left(x_{1}\right) C_{\lambda_{2}}\left(x_{2}\right) \ldots C_{\lambda_{m}}\left(x_{m}\right)
\end{aligned}
$$

Let A be a column vector whose elements are the interactions in some order and A^{\prime} the corresponding row vector.

Now

$$
\text { if } X^{\prime}=\left(x_{1}, x_{2} \ldots x_{m}\right)
$$

We can write (1) in a compact form

$$
a^{x 1}=h\left(X^{\prime}\right) A,
$$

where

$$
h\left(X^{\prime}\right) \text { is the row vector of the coefficients in (1). }
$$

Following this procedure of writing treatment yields as a function of the interactions and expressing the yield responses (i.e. treatment yield-control yield) instead of actual yield for the twoletter truncated factorial experiments and assuming that interactions of order two or more are negligible, we get the following form of the $h\left(X^{\prime}\right)$ for the two-letter truncated factorial experiment for 2^{m}.

$$
L\left(x^{\prime}\right)=\left[\begin{array}{c|c}
I_{11} & -M_{21}^{T} \\
\hline M_{21} & N_{22}
\end{array}\right]
$$

where I_{11} stands for unit matrix of order $m_{c 1} \times m_{c 1}$
M_{21} is matrix of order $m_{c 2} \times m_{01}$ where $m_{c 2}$ rows are obtained by adding the rows of the unit matrix in a natural order.
N_{22} is a matrix of the order $m_{c 8} \times m_{c 2}$ obtained from $-M_{21}{ }^{T}$ in the same way as M_{21} from I_{11}
Since $a^{x^{\prime}}=h\left(X^{\prime}\right) A$

$$
A=\left[h\left(X^{\prime}\right)\right]^{-1}\left(a^{x^{\prime}}\right)
$$

It can be easily verified that

$$
\left[h\left(X^{\prime}\right)\right]^{-1}=K\left[\left.-\frac{\mu_{11}}{-M_{12}^{T}} \right\rvert\, \frac{M_{12}}{\bar{I}_{22}}\right]
$$

where any element $\mu i j=3-n$ for $i=j$

$$
=-1 \quad \text { for } i \neq j
$$

and other submatrices are already defined.
Since each interaction is a contrast in terms of original observations we may express the variance of any treatment of the row corresponding to $A_{i}{ }^{{ }_{11}} A_{j}{ }^{\lambda_{2}}$
by

$$
V\left(A_{i}^{\lambda_{1}} A_{j}^{\lambda_{2}}\right)=\left[\Sigma 1_{i}^{2}+\left(\Sigma \Sigma_{i}\right)^{2}\right] \sigma^{2}
$$

where $\quad 1_{i}$ represents elements in the row and $\quad \sigma^{2}$ is the per plot variance.
(b) 3^{n} Two-letter truncated Factorial Experiment.

Suppose there are n factors $B_{1}, B_{2}, \ldots, B_{n}$ each at three levels.
Let $b_{1}{ }^{z_{1}} b_{2}{ }^{z_{2}} \cdots b_{n}{ }^{z_{n}}\left(z_{j}=0,1,2\right)$ denote the treatment in which the factors $B_{1}, B_{2}, \ldots, B_{n}$ occur at levels $z_{1}, z_{2}, \ldots, z_{n}\left(z_{j}=0,1,2\right)$
where $\quad b_{j}{ }^{0}=1$
and $\quad 1 . b_{j}{ }^{Z_{j}}=b_{j}{ }^{Z_{j}}$.
for $\quad z_{j} \neq 0$.
Thus if as usual we represent a treatment or the mean response by the symbol

$$
Y\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)
$$

then, $E\left[Y\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)\right]=b_{1}{ }^{Z_{1}} \quad b_{2}{ }^{Z_{2}} \cdots b_{n}{ }^{z_{n}}$
Let any interaction be denoted by $B_{1}{ }^{\mu_{1}} B_{2}{ }^{\mu_{2}} \ldots B_{n}{ }^{\mu_{n}}\left(\mu_{j}=0,1,2\right)$.
It can clearly be seen that the normal equations are of the form:

$$
E\left[\left(\begin{array}{l}
1 \\
b_{1} \\
b_{2}{ }^{2}
\end{array}\right) \oplus\left(\begin{array}{l}
1 \\
b_{2} \\
b_{2}{ }^{2}
\end{array}\right) \oplus \oplus\left(\begin{array}{l}
1 \\
b_{n} \\
b_{n^{2}}
\end{array}\right)\right]=K^{n}\left\{\left(\begin{array}{l}
1 \\
B_{1} \\
B_{1}{ }^{2}
\end{array}\right) \oplus\left(\begin{array}{l}
1 \\
B_{2} \\
B_{2}
\end{array}\right) \oplus \ldots \oplus\left(\begin{array}{l}
1 \\
B_{n_{2}} \\
B_{n^{2}}
\end{array}\right)\right\}
$$

with the convention $I . I=I, I . B=B . I, B^{0}=I$
where

$$
K=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -2 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{l}
d_{0} \\
d_{0} \\
d_{0}
\end{array}\left(\begin{array}{l}
0 \\
1 \\
d_{0}
\end{array}\right) \begin{array}{l}
d_{1} \\
d_{1} \\
d_{1}
\end{array}\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right) d_{2}^{d_{2}}\left(\begin{array}{l}
0 \\
d_{2}
\end{array}\binom{1}{2}\right]\right. \text { say }
$$

Thus as before I is mean response, and effects defined here do not obey the convention that the sum of the positive coefficient is unity. Each effect represents a single degree of freedom. Thus
$B_{1} B_{2}$ is the interaction of linear component of B_{1} "and the linear component of B_{2} and $B_{1} B_{2}{ }^{2}$ the linear component of B_{1} and the quadratic component of B_{2}.

Thus it can be deduced that

$$
\begin{equation*}
b_{1}{ }^{z_{1}} \quad b_{2}{ }^{z_{2}} \cdots b_{n}{ }^{z_{n}}=\prod_{j=1}^{n}\left\{d o\left(Z_{i}\right)+d_{1}\left(Z_{j}\right)+d_{2}\left(Z_{j}\right) B_{j}^{2}\right\} \cdots \tag{2}
\end{equation*}
$$

The coefficient of $B_{1}{ }^{\mu_{1}} B_{2}{ }^{\mu_{2}} \cdots B_{n}{ }^{\mu_{n}}$ when the right hand side of the above expression is expanded.

$$
d \mu_{1}\left(Z_{1}\right) d \mu_{2}\left(Z_{2}\right) \ldots d \mu_{n}\left(Z_{n}\right)
$$

As before we fix a standard order in interaction as $I, B_{1}, B_{2} \ldots$, $B_{n}, B_{1}{ }^{2}, B_{2}{ }^{2} \ldots B_{n}{ }^{2}, B_{1} B_{2}, B_{1} B_{3} \ldots B_{n-1} B_{n}, \ldots$ in which we want to take the interaction. Let B be the column vector of interaction in the same order and $Z^{\prime}=\left(Z_{1}, Z_{2} \ldots Z_{n}\right)$ then we can write the equation (2) in a compact form $b^{z^{\prime}}=K\left(\mathbf{Z}^{\prime}\right) B$

Now when we consider two-letter truncated factorial experiment for 3^{n} series assuming the interaction $B_{1}{ }^{\mu_{1}} B_{2}{ }^{\mu_{2}} \cdots B_{n}{ }^{\mu_{n}}$ such that $\Sigma_{\mu} \leqslant 2$ as negligible we get the following form of the $K\left(Z^{\prime}\right)$ split into 9 submatrices.

$$
K\left(Z^{\prime}\right)=\left[\begin{array}{l:l|l}
\frac{I_{11}}{2 I_{11}} & \frac{-3 I_{11}}{0_{11}} & \frac{-M_{21}^{T}}{M_{21}} \\
-2 M_{21} & \frac{-2 M_{21} T}{N_{22}}
\end{array}\right]
$$

where I and 0 are the unit and zero matrices of the order indicated. M_{21} is the same matrix as defined for 2^{m} two-letter truncated factorial experiment, the N_{22} is a matrix in which any element

$$
\begin{aligned}
N_{i j} & =0 \text { (if union between row number and the column number } \\
& \text { is empty) } \\
& =-1 \text { otherwise. }
\end{aligned}
$$

Now to estimate various effects we have to find the $K\left(Z^{\prime}\right)^{-1}$ because $B=\left[K\left(Z^{\prime}\right)\right]^{-1} b^{\prime}$. \quad The inverse of $K\left(Z^{\prime}\right)$ can be easily obtained as

$$
K\left(Z^{\prime}\right)=\left[\begin{array}{l|l|l}
-\mu_{11} & \frac{M_{21} T}{} / 2 I_{11} \\
\hdashline-1 / 3 I_{11} & \frac{1 / 6 I_{11}}{0_{21}} & \frac{0_{21} T}{I_{22}}
\end{array}\right]
$$

where for μ_{11} any element $\mu_{i j}=(n-I)$ when $i=j(n>2)$

$$
=1 \text { when } i \neq j
$$

For $n=2$ however there is an exception i.e. in this case

$$
K\left(Z^{\prime}\right)=\left[\begin{array}{rr|rr|r}
1 & 0 & -3 & 0 & -1 \\
0 & 1 & 0 & -3 & -1 \\
\hline 2 & 0 & 0 & 0 & -2 \\
0 & 2 & 0 & 0 & -2 \\
\hline 1 & 1 & -3 & -3 & 0
\end{array}\right]
$$

and

$$
\left[K\left(Z^{\prime}\right)\right]^{-1}=1 / 6\left[\begin{array}{rr|rr|r}
-3 & -3 & 3 & 0 & 3 \\
-3 & -3 & 0 & 3 & 3 \\
\hline-2 & 0 & 1 & 0 & 0 \\
0 & -2 & 0 & 1 & 0 \\
\hline-3 & -3 & 0 & 0 & \frac{0}{3}
\end{array}\right]
$$

(c) $2^{m} \times 3^{n}$ two-letter truncated factorial experiments.

Let there be m factors $A_{1}, A_{2} \ldots, A_{m}$ each at two levels and n factors $B_{1}, B_{2}, \ldots, B_{n}$ each at three levels; then there are $2^{m} \times 3^{n}$ treatment combinations in a complete factorial. The symbol $a_{1}^{x_{1}} a_{2}^{x_{2}} \ldots a m^{x_{m}} b_{1} z_{1} b_{2} z_{2} \ldots b_{n}^{z_{n}} \ldots$. (3) denotes the treatment in which factors $A_{1}, A_{2}, \ldots, A_{m}$ occur at levels x_{1}, x_{2}, \ldots, $x_{m}\left(x_{i}=0,1\right)$ and the factors $B_{1}, B_{2}, \ldots, B_{n}$ occur at levels Z_{1}, Z_{2}, \ldots $Z_{n}\left(Z_{j}=0,1,2\right)$.

In this case the relation between the treatment and interaction is :

$$
\begin{aligned}
& E\left[\left(a^{1}{ }_{1}\right) \oplus\left(a_{2}{ }_{2}\right) \oplus \ldots \oplus\left(a^{1}{ }_{m}\right) \oplus\left(\begin{array}{l}
1 \\
b_{1} \\
b_{1}{ }_{1}
\end{array}\right) \oplus\left(\begin{array}{l}
1 \\
b_{2} \\
b^{2}{ }_{2}
\end{array}\right) \oplus \ldots\left(\begin{array}{l}
1 \\
b_{n} \\
b^{2}{ }_{n}
\end{array}\right)\right]= \\
& \mathrm{G}\left[\left(A^{1}{ }_{1}\right) \oplus\left(A^{1}\right) \oplus \ldots \oplus\left(A^{1}{ }_{m}\right) \oplus\binom{1}{B_{B_{1}^{1}}} \oplus\left(\begin{array}{l}
1 \\
B_{2} \\
B_{2}{ }_{2}
\end{array}\right) \oplus \ldots \oplus\left(\begin{array}{l}
1 \\
B_{n} \\
B^{2}{ }_{n}
\end{array}\right)\right]
\end{aligned}
$$

with convention $I . I=I$ etc. $A_{1} B_{1}=$ stands for $A_{1} \times B_{1}$ linear ; similarly $B_{1} B_{2}$ stands for $B_{1} \times B_{2}$ linear. From this we may express any treatment as linear combinations of interactions.

$$
\begin{gathered}
a_{1}^{x_{1}} a_{2}^{x_{2}} \cdots a_{m}^{x_{m}} b_{1}^{z_{1}} b_{2}^{z_{2}} \cdots b_{n}^{z_{n}}=\prod_{i=1}^{m}\left[C_{i}\left(x_{i}\right)+C_{1}\left(x_{i}\right) A_{i}\right] \\
\times \prod_{j=1}^{n}\left[d o\left(z_{j}\right)+d_{1}\left(z_{j}\right) B_{j}+d_{2}\left(z_{j}\right) B_{j}^{2}\right]
\end{gathered}
$$

If we take some standard order of the interactions $A_{1}{ }^{\lambda_{1}} A_{2}{ }^{\lambda_{2}}$ $\ldots A_{m}^{\lambda_{m}} B_{1}{ }^{\mu_{1}} B_{2}{ }^{\mu_{2}} \ldots B_{n}{ }^{\mu_{n}}$ and let $A B$ may be a column vector of that order and let the corresponding standard order for the treatments be $a b$ in the form column vectors.

$$
\left(a b^{\prime}\right)=(G)\left(A B^{\prime}\right)
$$

Now for the two-letter truncated factorial experiments in $2^{m} \times 3^{n}$ series (see page 43) where
(i) $M_{\left(n_{2}\right)\left(n_{1}\right)}$ is the matrix of order $\left(n_{2}\right) \times\left(n_{1}\right)$ having the elements in the fashion given for 2^{n} fact experiment.
(ii) $\alpha_{1}=n$-vector $(1,1 \ldots 1)$
(iii) $\alpha_{0}=n$-nector $(0,0 \ldots 0)$
(iv) $1\left(\alpha_{1}, \alpha_{0}\right)$ is a unit matrix of order $m \times m$ with diagonal elements as vector and the remaining elements as vector.
(v) $P\binom{m}{2}\binom{m}{2}$ is a matrix with any elements $p i j=0$ for $i=j$

$$
=-2 \text { for } i \neq j
$$

(vi) is a systematic matrix with diagonal elements as matrix and other elements as ($-i$) I matrix of $T m \times m$ order $n \times n$.

Since $(a b)=(G)\left(A B^{\prime}\right)$

$$
\left(A B^{\prime}\right)=(\mathrm{G})^{-1}\left(a b^{\prime}\right)
$$

We can easily get the inverted matrix as follows (see page 44):
where

$$
\begin{aligned}
& \lambda\binom{m}{1}\binom{n}{1} \text { is a matrix with the elements } \\
& \lambda_{i i}=[1-(n+m)] / 4 \text { if } n \text { is even } \\
& \quad=-(m+n) / 4 \text { if } n \text { is odd }
\end{aligned}
$$

	$\left.Q^{(} \begin{array}{l} n \\ 1 \end{array}\right)\binom{n}{1}$	$1 / 2 I\binom{n}{1}\binom{n}{1}$	$M^{T}\binom{n}{2}\binom{n}{1}$	$\left\lvert\,-1 / 2 K^{T}\binom{n}{1}\binom{n}{1}\right.$	$O_{\binom{m}{2}\binom{n}{1}}$	$1 / 2 I\binom{n}{1}\binom{n}{1} \quad ?$
$[G]={ }^{-1}$	$-1 / 3 I\binom{n}{1}\binom{n}{1}$	${ }^{1 / 6 I}\binom{n}{1}\binom{n}{1}$	$O^{\boldsymbol{T}}\binom{n}{2}\binom{n}{1}$	$O^{T}\binom{n}{1}\binom{n}{1}$	$O_{\binom{T}{2}\binom{n}{1}}$	
	$-M\binom{n}{2}\binom{n}{1}$	$O\binom{n}{2}\binom{n}{1}$	$I\binom{n}{2}\binom{n}{2}$	$O_{\binom{T}{2}\binom{n}{1} .}$	$O^{T}\binom{m}{2}\binom{n}{2}$	$o\binom{n}{2}\binom{n}{1} \quad$ 号
	${ }^{-1 / 2 K}\binom{m}{1}\binom{n}{1}$	${ }^{O}\binom{m}{1}\binom{n}{1}$	${ }^{O}\binom{m}{2}\binom{n}{1}$	$\binom{m}{1}\binom{n}{1}$	$-1 / 4 M^{T}\binom{m}{1}\binom{m}{1}$	$-1 / 2 I{ }_{\left(\alpha_{1}, \alpha_{0}\right)}$
	$O^{(}\binom{m}{2}\binom{n}{1}$	${ }^{O}\binom{m}{2}\binom{n}{1}$	$O\binom{m}{2}\binom{n}{2}$	$\left\|-1 / 4 M\binom{m}{2}\binom{m}{1}\right\|$	$1 / 4 I\binom{m}{2}\binom{n}{2}$	$O_{\binom{n}{1}\binom{m}{2}}$
	$-1 / 21\binom{n}{1}\binom{n}{1}$	${ }^{O}\binom{m}{1}\binom{n}{1}$	$O_{\binom{n}{1}\binom{n}{2} .}$	$\begin{array}{r} -1 / 2 I\left(\alpha_{1}, \alpha_{0}\right) \\ \binom{n}{1}\binom{m}{1} \end{array}$	$O\binom{n}{1}\binom{m}{2}$	${ }^{1 / 2} I_{m \times n}$

and

$$
\begin{aligned}
& \lambda_{i j}=-1 / 4 \\
& \left.\begin{array}{rl}
Q\binom{n}{1}
\end{array}\right)\binom{n}{1} \text { is a matrix with the elements } \\
& q_{i i} \\
& =-(m+n) / 2 \text { if } n \text { is even } \\
& \quad=-(m+n+1) / 2 \text { if } n \text { is odd }
\end{aligned} .
$$

and

$$
q_{i j}=-1 \text { if }(i \neq j)
$$

3. Summary

In this paper we have defined K-letter truncated factorial experiments. The estimation procedure for main-effects and interactions (on Linear \times linear component of two factor interactions if the factors are at more than two levels) has been given for $2-L . T . F . E$ of $2^{m}, 3^{n}$ and $3^{n} \times 2^{m}$ factorial experiments.

Acknowledgement

The authors wish to express their grateful thanks to Dr. M.N. Das, Deputy Statistical Adviser \& Senior Professor of Statistics, Institute of Agricultural Research Statistics, New Delhi for his many useful suggestions and help in writing the paper.

References

Addelman, S. (1961) : Irregular fractions of the 2^{n} factorial experiments. Technometics, 3(4), 479.
Bose, R.C. and Cowwor : Analysis of fractionally replicated $2^{m} \times 3^{n}$ designs. W.S. (1960)

Bose, R. C. and Srivastava, J.N. (1964)
Dey, A and Saha, G. M. (1968)

Finney D. J. (1945) : The fractional replication of factorial arrangements, Ann. Eugenics, 12, 291-301.
Plackett, R.L. (1946) : The design of multifactorial experiments and Burman J.P. Bull, Institute, Statistical Institute, 37 (3), 141.
Analysis of irregular factorial fractions, Sankhya, series A, 1964, 26, 117-144.
: On some irregular fraction of 2^{n} factorials, Jour. Ind. Soc. Agric. Statist., 20(2), 45. Biometrika, 33, 305.

[^0]: * Senior Statistician (Soil conservation) : Ministry of Agriculture, New Delhi-1.

